ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
એક પણ છાપ નહિ.
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $F$ be the event of the occurrence of no head.
Accordingly, $F=\{TTT\}$
$\therefore P ( F )=\frac{n( F )}{n(S)}=\frac{1}{8}$
એક પાસાને ફેકવાના પ્ર્યોગનો વિચાર કરીએ. એક અવિભાજય પૂર્ણાક મળે તેને ઘટના $A$ અને એક અયુગ્મ પૂર્ણાક પ્રાપ્ત થાય તેને ધટના $B$ તરીકે દર્શાવવામાં આવેલ છે. આપેલ ધટનાઓ $A$ નહિ મેળવો.
$52$ પત્તા પૈકી એક પત્તુ પસંદ કરતાં તે પૈકી રાણી અથવા લાલ પત્તુ હોવાની સંભાવના કેટલી થાય ?
એક પાસાને ફેંકવામાં આવ્યો છે. નીચે આપેલ ઘટનાઓની સંભાવના શોધો :
$6$ થી નાની સંખ્યા આવે.
એક ડબામાં $1$ લાલ અને $3$ સમાન સફેદ દડા રાખ્યા છે. બે દડા એક પછી એક પાછા મૂક્યા વગર ડબામાંથી યાદચ્છિક રીતે કાઢવામાં આવે છે.આ પ્રયોગનો નિદર્શાવકાશ લખો.
તાસની $52$ પત્તાંની થોકડીમાંથી એક પનું યાદચ્છિક રીતે ખેંચવામાં આવે છે.
પત્તે એક્કો હોય તેની સંભાવના શોધો.